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Summary 

The SARS-CoV-2 Omicron variant evades most neutralizing vaccine-induced antibodies and is associated with 

lower antibody titers upon breakthrough infections than previous variants. However, the mechanism remains 

unclear. Here, we find using a geometric deep-learning model that Omicron's extensively mutated receptor 

binding site (RBS) features reduced antigenicity compared to previous variants. Mice immunization 

experiments with different recombinant Receptor Binding Domains (RBD) variants confirm that the serological 

response to Omicron is drastically attenuated and less potent. Analyses of serum cross-reactivity and 

competitive ELISA reveal a reduction in antibody response across both variable and conserved RBD epitopes. 

Computational modeling confirms that the RBS has a potential for further antigenicity reduction while retaining 

efficient receptor binding. Finally, we find a similar trend of antigenicity reduction over decades for hCoV229E, 

a common cold coronavirus. Thus our study explains the reduced antibody titers associated with Omicron 

infection and reveals a possible trajectory of future viral evolution. 
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Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, producing variants of 

concern (VOC) with improved transmissibility and abilities to evade host immunity. The newly identified VOC 

Omicron (B.1.1.529) contains many mutations including 11 that localize on the variable RBS, which is the major 

target of serologic response (Piccoli et al., 2020). These mutations collectively facilitate the immune evasion of 

both vaccinated and convalescent sera while maintaining ACE2 binding (Collie et al., 2021; Edara et al., 2022; 

Hoffmann et al., 2021; Liu et al., 2021; Rossler et al., 2022b; Schmidt et al., 2022; Servellita et al., 2022). Some 

of the Omicron mutations (S477N, E484K, N501Y, Q498R) previously emerged from an in vitro directed 

evolution experiment optimizing ACE2 binding(Zahradnik et al., 2021). Others, including K417N,E484A and 

Q498R induced immune escape from WT-elicited antibodies (Greaney et al., 2022a). However, it remains unclear 

if the extensive RBD mutations could affect the immunogenicity, antigenicity and immunodominance hierarchy 

of the naive host antibody response (Greaney et al., 2022b).  

 

Here, immunogenicity refers to the ability of an antigen to induce a humoral and/or cell-mediated immune 

response upon immunization or infection (Anfosso et al., 1979). B-cell antigenicity refers to the magnitude of 

antigen binding by affinity-matured antibodies (Zhang and Tao, 2015). The immunodominance hierarchy 

corresponds to the spatial distribution of epitopes on the antigen structures (Angeletti and Yewdell, 2018). Despite 

their importance, however, high throughput analysis of immunogenicity, antigenicity or immunodominance 

hierarchy of a protein antigen remains very challenging (Angeletti and Yewdell, 2018). Empirical, data-driven 

approaches are appealing alternatives, as they can sidestep the slow and intractable affinity maturation process. 

However, while T-cell epitope prediction is now well established, B-cell epitope prediction has limited success. 

Indeed, antibodies frequently target conformational epitopes, sets of residues close in space but distal along the 

sequence. This hampers i) comprehensive experimental mapping of antibody epitopes and ii) computational 

prediction from sequence only. Recently, we have developed ScanNet, a geometric deep learning model for 

structure-based prediction of binding sites, including protein-protein binding sites and B-cell epitopes (Tubiana 

et al., 2022). ScanNet is an end-to-end, interpretable deep learning architecture that builds representations of 

atoms and amino acids based on the spatio-chemical arrangements of their neighbors. It exploits a large public 

dataset containing thousands of antigen structures with labeled epitopes to learn the three-dimensional structural 

patterns underlying antibody binding. Examples of structural patterns learned by the model include the prescribed 

absence of atoms, e.g., exposed side chain atoms or backbones nitrogens/oxygens available for hydrogen bond 

formation. ScanNet can make predictions using either an experimental structure or computational model as input 

and calculates a residue-wise epitope probability score - hereafter termed antigenicity profile. ScanNet predicts 

epitopes substantially more accurately than other established approaches including those based on i) comparative 

modeling, ii) physico-chemical and geometric features such as hydrophobicity scales and solvent accessibility 

and iii) AlphaFold-Multimer. Importantly, the ScanNet-predicted antigenicity profile of the wild type spike 

glycoprotein RBD correlated well with the empirical antibody hit rate estimated from available structures of spike 

protein-antibody complexes. Thus, its antigenic profile directly reflected the immunodominance hierarchy, i.e. 

the epitope distribution. This prompted us to systematically investigate the impact of VOC mutations on 

antigenicity and immunodominance hierarchy using ScanNet. 

 

 

Results 

Deep learning predicts a decrease in the Omicron RBS antigenicity 

Here, we used a geometric deep learning model (ScanNet(Tubiana et al., 2022)) together with available 

experimental RBD structures and structure modeling tools (Modeller, Rosetta) to systematically investigate the 
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RBD antigenic profiles for WT (the Wuhan strain) and the VOCs (Figure 1). To validate our computational 

pipeline, we calculated the antigenicity profile for WT and found that it correlates well with the frequency of 

structurally determined RBD epitopes (Spearman rho=0.77, Methods, Figure S1A). The antigenicity profiles are 

overall similar for all the RBDs - as expected given the high sequential and structural similarity - and the RBS 

residues have high antibody binding propensity (Figure 1A). Alpha, Beta, and Delta VOCs have a moderate 

increase in the RBS antigenicity compared to WT (Figure 1B,E). However, the antigenicity of Omicron RBS 

(particularly, residues 470-500 and 445-455) was significantly reduced (Figure 1B-E). Moderate increases in 

antigenicity were also detected for several residues (403-420, 501-505), however, these sites are less targeted than 

the dominant epitopes mapped experimentally (Figures S1A,C,D). A significantly negative correlation (Pearson 

correlation r=-0.43, p-value=2.4x10-10) was found between the residue-wise empirical antibody hit rate and the 

change in antigenicity upon Omicron mutations (Figure S1B). Together, our analysis indicates that the overall 

antigenicity of Omicron RBS is reduced, with the strongest reduction on the residues most frequently targeted by 

antibodies. 

 

To assess the significance of the change and dissect the individual contribution of the 15 Omicron mutations to 

the overall antigenicity, we modeled the structures of the corresponding 15 single-point mutants using Modeller 

(Webb and Sali, 2017) and calculated their antigenic profiles (Methods). Eight mutations (53%) decreased the 

antigenicity, particularly Q493R, G496S, and Q498R (Figure 1D). Five mutations (33%) increased the 

antigenicity while the remaining had no obvious effect. Next, we modeled the structures of all the point mutants 

and calculated their antigenicity (Figure S2A). Only 26% decreased the antigenicity (Figure 1F). Therefore, the 

reduced antigenicity of Omicron is not random (p=0.034, 𝜒2 contingency test) and may result from evolutionary 

pressure. To evaluate the potential synergistic effects, we also investigated the combined effects of mutations, 

and found overall positive epistasis, meaning that mutations with similar effects tended to reinforce one another 

(Methods). 

 

Omicron mutations lead to a drastic and systemic reduction in RBD antigenicity in vivo  

To substantiate the deep-learning analysis, we immunized mice via the mucosal delivery route with the 

recombinant RBDs from WT (n=4) or VOCs (n=5) and analyzed their adaptive immune responses (Methods). 

All the animals showed robust and comparable T cell responses as indicated by the in vitro recall assays. 

Specifically, their splenocytes produced high levels of IFNg when re-stimulated with WT, Delta, or Omicron 

RBDs regardless of the immunogens that they originally received (Figure S3A), suggesting a successful initiation 

of Th1-mediated immune response. A strong Th17 response was also generated as expected for this type of 

mucosal immunization regimen(Clemente et al., 2017) (Figure S3B). IL-17 levels appeared to be more consistent 

among all groups of mice suggesting they were mainly produced by antigen-specific CD4 T cells whereas IFNg 

can come from nature killer or gamma-delta T cells without the need of antigen recognition. We also analyzed 

the local response in the lungs in the animals and observed comparable IFNg and IL-17 responses (Figure S3C-

D).  

 

Next, we performed ELISA to measure antibody titers of the immunized sera from 15 days (Figure S4) and 25 

days (Figure 2) after the boost against the corresponding antigens. In contrast to the T cell response, we found 

that the antibody titers (half-maximal inhibitory reciprocal serum dilution or ID50) of the Omicron-immunized 

sera were consistently low in both bleeds and significantly reduced by over 15-fold (mean ID50 = 924) compared 

to that of WT (mean ID50 = 15,325) and other VOCs (mean ID50s = 11,564, 14,683 and 19,557 for Alpha, Beta, 

and Delta, respectively) (Figure 2A). Thus, our in vivo experiments were consistent with the deep learning model, 

revealing that mutations can greatly reduce the antigenicity of Omicron RBD. 

 

Previous structural analysis revealed that the majority of antibodies target the variable RBS(Yuan et al., 2021). 

The remaining antibodies bind conserved epitopes that are cross-reactive among VOCs(Barnes et al., 2020; 

Cameroni et al., 2021; Gaebler et al., 2021; Xiang et al., 2021). To better understand the antigenicity and 

immunodominance hierarchy of RBD variants, we evaluated the cross-reactivity of immunized sera by ELISA 

(Figure 2B-C). WT-immunized sera had comparably high titers against Alpha (ID50 = 15,176) and Delta (ID50 
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= 13,985) RBDs but presented decreased activities against Beta (ID50 = 10,763; by 35%) and more substantially 

against Omicron (ID50 = 6,201; by 69%). The magnitudes of antibody evasion by VOCs were consistent with 

clinical data(Edara et al., 2022; Hoffmann et al., 2021; Liu et al., 2021; Rossler et al., 2022b; Schmidt et al., 

2022; Servellita et al., 2022), indicating that the RBD immunodominance hierarchy is similar between mouse and 

human.  

 

We found that Omicron-immunized sera had substantially lower antibody titers against all the VOCs (with the 

mean ID50s in the range of 388-626, Figure 2B). Despite the reductions, Omicron-immunized sera still bind most 

efficiently to its own antigen (Figure 2B), indicating that Omicron’s RBS remains to be highly antigenic while 

other conserved epitopes can also contribute to the overall antigenicity. Moreover, while the titer of Omicron-

immunized sera against WT RBD was only a small fraction of that of WT-immunized sera against Omicron 

(388/6201 or 6%), the percentages of cross-reactive antibodies were highly comparable (~31%, Figure 2C). Thus, 

the immunodominance hierarchy for Omicron remained largely unaltered and the reduction of response was rather 

systemic, contributed by both RBS and other conserved epitopes. This result was further supported by competitive 

ELISA using either the recombinant ACE2 or high-affinity nanobodies targeting distinct and highly conserved 

RBD epitopes (Figure S5, Methods).   

 

Since Beta RBD shares three mutation sites with Omicron (K417N, E484K/A, and N501Y) critical for antibody 

binding, we also evaluated the cross-reactivity of Beta-immunized sera and found that the titer only decreased by 

51% against the Omicron RBD. These sera cross-reacted better with Omicron RBD than the WT-immunized sera, 

where a 69% titer reduction was observed against the Omicron RBD (Figure 2C). Since the antibody titers of the 

Beta immunized mice are comparable to those of WT sera, we conclude that these three mutated residues do not 

significantly contribute to the antigenicity decrease (Figure 1D).  

 

Next, we performed SARS-CoV-2 pseudovirus assay to evaluate the contribution of Omicron mutations to the 

neutralization potency of the immunized sera (Figure 2D). Despite some cross-reactivity of WT-immunized sera 

against Omicron (ID50 = 6,201), their neutralization activities were barely detectable. Strikingly, the potencies 

of the Omicron-immunized sera were generally inefficient against the Omicron virus (except for one serum) and 

their activities against WT (the Wuhan-Hu-1/D614G strain) were hardly detected. 

 

Analysis of the evolution of hCoV229E reveals a decrease in antigenicity  

hCoV229E is a common cold coronavirus that has been circulating in the human population for decades. As one 

of the first coronavirus strains being described, its sequences and structures have been well documented and can 

be used as a model system to study the evolution of antigenicity and host serologic response(Eguia et al., 2021; 

Li et al., 2019; Wong et al., 2017). Previous structural and immunological studies suggested that the hCoV229E 

alphacoronavirus has been undergoing extensive antibody escape(Eguia et al., 2021; Li et al., 2019; Wong et al., 

2017), and that its evolution could reflect the future evolution of SARS-CoV-2(Eguia et al., 2021). The 

hCoV229E proteome features a spike protein with a (structurally different) receptor binding domain that targets 

the human aminopeptidase N protein. Similar to SARS-CoV-2, the corresponding receptor binding site, which 

consists of three loops, is also the major immunodominant region. We collected RBD sequences of all hCoV229E 

isolates with known collection dates and evaluated their antigenicity via structural modeling and ScanNet. 

Longitudinal analysis revealed an overall trend of decreasing antigenicity on RBS until the 2010s, with subsequent 

oscillation during the last decade (Figure 3A). Allegedly, these two phases might correspond to i) a transitory 

adaptation period to the host humoral immunity and ii) an out-of-equilibrium, stationary phase where the virus 

continuously evolves to shield itself from antibodies elicited by past infections.  

 

While we are unfamiliar with related works on the evolution of susceptibility to adaptive immunity, similar trends 

were reported for innate immunity (Di Gioacchino et al., 2021; Greenbaum et al., 2014; Greenbaum et al., 2008). 

Notably, since the 1918 outbreak, the H1N1 strand has gradually evolved to hide from pattern recognition 

receptors by reducing its number of CpG dinucleotide motifs through synonymous mutations.  
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Computational exploration for the SARS-CoV-2 RBD sequence space opens up the possibility of a further 

decrease in antigenicity 

Since SARS-CoV-2 was only recently introduced into the human population, there is insufficient information to 

witness a similar evolutionary trend. We can nonetheless evaluate the potential for additional reduction of 

antigenicity. Although the virtual deep mutational scan readily identifies multiple mutations that could lead to 

antigenicity reduction - particularly on sites 448,449, 506 (Figure S2A), it is unclear whether or not they are 

beneficial for the overall viral fitness. Viral fitness includes multiple factors, such as affinity and specificity of 

ACE2 binding, structural stability, equilibrium distribution of up and down conformations and corresponding 

transition times. Therefore, we restricted the search space to variants that are likely to arise based on past 

evolutionary records. This was done in four steps (Methods): (1) Construction of a multiple sequence alignment 

(MSA) of beta coronaviruses RBDs. (2) Selection, training and validation of a sequence generative model, i.e. a 

probability distribution over RBD sequences P(S). (3) Generation of a repertoire of de novo RBD variants by 

sampling from the sequence generative model in the vicinity of the original WT (a total of 1,000 variants- each 

contains 15 point mutations similar to those of Omicron). (4) Determination of the antigenicity and protein 

binding profiles using ScanNet for each de novo variant. The protein binding profile is similarly determined as 

the antigenicity profile using a ScanNet model trained for generic protein-protein binding site prediction. We 

monitored it to ensure that antigenicity reduction is not achieved by an overall loss of protein binding. 

 

The sequences of the de novo variants obtained by sampling from the generative model preserved the conservation 

and coevolution patterns of the RBD protein family and the sarbecovirus subgenius (Figure S6). As expected, 

their sequences varied substantially on the RBS and exhibited diverse ranges of antigenicity and protein binding 

propensity (Figure 3B). We found that antigenicity and protein binding scores are correlated, indicating a possible  

evolutionary trade-off between ACE2 binding and the immune escape. A small fraction (7.4%) of the artificial 

variants showed potentially improved binding and reduced antigenicity than Omicron (Figure 3B, shaded square).  

 

Based on Shannon entropy calculations, there are 0.074 x 2.7^15=200k such de novo 15-point variants, implying 

a trajectory of uncertainty with a possibility of further antigenic reduction of new variants. Enrichment analysis 

(Methods) further revealed that multiple mutations, including Q493 I/V/L, P479I, L452Y, and K462Q, may 

contribute to the decrease while maintaining stability and ACE2 binding. However, we must stress that only a 

fraction of these RBD variants is likely viable for the virus. First, evolutionary-based generative modeling, despite 

being extensively validated (Hawkins-Hooker et al., 2021; Repecka et al., 2021; Russ et al., 2020; Wu et al., 

2021), does not guarantee (100%) protein stability. Second, both the evolutionary model and the ScanNet binding 

propensity scores are host-agnostic. Hence, the designed sequences do not necessarily bind Human ACE2 but 

instead may bind other ACE2 orthologs, as observed e.g. for ancestral sarbecovirus sequences(Starr et al., 2022). 

Last, the ScanNet antigenicity prediction is imperfect. 

 

 

 

Discussion 

In this study, we leveraged computational prediction facilitated by geometric deep-learning (ScanNet) and 

experimental approaches to systematically investigate the RBD antigenicity.  ScanNet provides a rapid means to 

quantify the antigenicity of proteins from structure, at the individual residue level, for emerging viruses and their 

variants. The use of the mouse model for the investigation of RBD antigenicity enables comparison among 

variants, minimizing the potential bias and background complexity that are often associated with clinical samples. 

Competitive ELISA using pan-sarbecovirus-binding nanobodies allows experimental investigation of the 

immunodominance hierarchy.  

 

We found that Omicron mutations resulted in substantial antigenicity reduction on the RBS site - the key target 

of neutralizing antibodies and, correspondingly, substantially lower antibody titers. Interestingly, we did not 

detect major changes in the immunodominance hierarchy, as Omicron-immunized sera also bound less efficiently 

the conserved, non-RBS epitopes than WT-immunized sera. This implies that the localized antigenicity reduction 
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resulted in a lower overall immunogenicity. Hypothetically, proteins that are more antigenic are better associated 

by polyreactive IgGs which, in turn, could facilitate affinity maturation and trigger faster the humoral immune 

system.  

 

We stress that such an immune concealing strategy differs from the immune escape one, where mutations prevent 

binding by matured antibodies elicited from past infections. Immune concealing could provide an absolute viral 

fitness improvement that might explain the rapid takeover of Omicron over Delta. Consistently, longitudinal study 

of the hCoV229E receptor binding domain using ScanNet showed a consistent decrease of antigenicity over 

decades (with short-term fluctuations), followed by an oscillatory phase possibly stirred by immune escape. It 

remains unclear which of the two strategies is preferable throughout the complete course of viral evolution. For 

SARS-CoV-2, computational analysis of artificial variants shows that a further decrease of antigenicity is 

plausible. However, only a fraction of these variants is likely viable, and future experimental validations will be 

necessary to better understand the properties of these possible future variants.  
 

Our results corroborate findings from other studies. During our manuscript preparation, a preprint reported that 

an Omicron-specific mRNA vaccine boost appears to provide inferior protection against Omicron infection in 

non-human primates compared to boost using the WT mRNA vaccine(Gagne et al., 2022). Moreover, new clinical 

data suggested that the antibody titers after Omicron breakthrough cases were lower than those of after Delta 

infection (Collie et al., 2021; Edara et al., 2022; Hoffmann et al., 2021; Liu et al., 2021; Rossler et al., 2022b; 

Schmidt et al., 2022; Servellita et al., 2022). Finally, Omicron convalescent sera from unvaccinated individuals 

were found to only weakly neutralize Omicron virus while the serum neutralizing activities against other VOCs 

were below the detection limits (Khan et al., 2022; Rossler et al., 2022a). Thus, our study is consistent with both 

the preclinical vaccine trials and clinical convalescent data and provides critical insights into the underlying 

mechanism of the attenuated host serologic response against Omicron. Cumulatively, our investigations unravel 

a potential trajectory of future viral evolution and underlie the challenges to develop effective Omicron-specific 

vaccines. 

 

Limitations of the study 

 

Although ScanNet enables rapid and reliable assessment of antigenicity, we note that the correlation between our 

predicted antigenicity and the experimental results is most likely non-linear.  In the current study, we only 

explored a single immunization protocol by the intraperitoneal route. Our results were also based on the 

recombinant RBD, which dominates host antibody response, instead of on the whole spike glycoprotein and/or 

viral infection. However, emerging evidence based on vaccine and infection support our central conclusion that 

Omicron is characterized by inferior antigenicity. In addition, the major focus of our study is to understand the 

antibody response against VOCs. Investigations on other components of cellular immunity (such as T cell 

immunity and Fc effectors functions) may yield more comprehensive insight into the disrupted host response by 

Omicron and the potential mechanism (Hi et al. 2022, Richardson et al. 2022). Finally, due to technical challenges, 

our current work did not experimentally explore the computationally designed variants. Future studies will be 

needed to carefully evaluate these variants to better understand the potential trajectory of viral evolution. 

 

Acknowledgments 

We thank Zhe Sang for the analysis of antibody binding. J.T. acknowledges helpful discussion with Andrea Di 

Gioacchino and Simona Cocco. Funding: This work was supported by NIH grant R35GM137905 (Y.S.), 

R01AI163011 (Y.S. and D.S.), R01HL137709 (K.C.), ISF 1466/18 and Israeli Ministry of Science and 

Technology (D.S.), the Edmond J. Safra Center for Bioinformatics at Tel Aviv University and from the Human 

Frontier Science Program (cross-disciplinary postdoctoral fellowship LT001058/2019-C) (JT), Len Blavatnik and 

the Blavatnik Family Foundation (H.J.W.).  

 

 

Jo
urn

al 
Pre-

pro
of



7 

Author contributions 

D.S. and Y.S. conceived the study. J.T. performed all the computational analysis with the help of D.S. and H.J.W.. 

Y.X., L.F., and K.C. performed the experiments. J.T.,Y.S.. and D.S drafted the manuscript with substantial input 

from Y.X. and K.C. All authors reviewed the manuscript.  

 

Declaration of interests:  

The authors declare no competing interests.  

 

 

Figure 1. Impact of Omicron mutations on antigenicity based on Geometric Deep Learning.  

A. Residue-wise antigenicity profile of WT and four VOCs computed with ScanNet. For each sequence, 

predictions are averaged over multiple structural conformations (Methods). B. Difference between each VOC 

and WT, depicted as a scatter plot. The area of each point represents the statistical significance of the difference 

(larger is more significant): it is proportional to the absolute value of the associated Z-score (clipped at |Z|=10, 

the dots in the caption correspond to |Z|=5). C. Omicron RBD colored by the difference of antigenicity (PDB: 

7qnw) with respect to WT. D. Upper panel: Prevalence of mutations for each VOC based on GISAID. Bottom 

panel: Corresponding predicted change in overall antigenicity. E. Boxplots of RBS average antigenicity for WT 

and four VOCs calculated over multiple structures. p-value annotated legend: ns: p> 5e-2, ***: p<1e-4 (two-sided 

Wilcoxon-Mann-Whitney test). F. Distribution of changes in antigenicity across all single-point mutations and 

all stability-preserving single-point mutations previously identified by deep mutation scan ((Starr et al., 2020), a 

cut-off of -0.5 in log-odds scale). The blue histogram denotes the distribution over structural models of the WT 

scores, and intuitively corresponds to the noise level induced by the structural modeling component of the 

prediction pipeline. The corresponding matrix is shown in Figure S2A. 

 

Figure 2: Analysis of the RBD-immunized sera.  

A. ELISA of RBD-immunized mouse sera (n=4 mice for WT, n=5 for VOCs) against the corresponding 

antigen. The binding titer was calculated as the ID50 (reciprocal serum dilution that inhibits the 50% maximal 

RBD binding). B. ELISA of RBD-immunized sera against five different RBDs (cross-reactivity analysis). C. 

The percentage change of binding titers against different RBDs. D. Pseudovirus neutralization assay evaluating 

the potencies of WT and Omicron RBD-immunized sera against either SARS-CoV-2 WT (Wuhan-Hu-1, 

D614G) strain or Omicron. The neutralization titer was calculated as the ID50 (reciprocal serum dilution that 

inhibits 50% of the maximal pseudovirus infection). Two connected dots referred to the pseudovirus 

neutralization results of the same animal serum. The dashed line indicates the highest serum concentration (i.e., 

dilution of 22, which is the lowest reciprocal serum dilution) used in the study. 

 

Figure 3: Plausibility of further decrease of antigenicity in future variants.  

A. Evolution of the antigenicity of hCoV229E RBS for isolates collected from the 1960s to date. Classes are 

assigned based on phylogeny and structural features of the RBS, following (Li et al., 2019; Wong et al., 2017). 

Black line denotes the isotonic regression fit  (i.e. piecewise constant, monotonous least square fit) using all points 

until 2010. A downward trend is observed for over 40 years (Spearman correlation coefficient: -0.82, p = 1e-18 

).  B. ScanNet-predicted protein binding propensity (higher is better) vs antigenicity (lower is better) of the SARS-

CoV-2 RBS for WT, four VOCs, all single-point mutants and 1,000 artificial variants with 15 mutations from 

WT (same number as Omicron) generated using a sequence generative model (Methods). Crosses indicate 95% 

confidence interval. 
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STAR Methods 
 

RESOURCE AVAILABILITY 

 
Lead contact 

Further information and requests for reagents may be directed to and will be fulfilled by Lead Contact Yi Shi. 

(wally.yis@gmail.com). 

 
Materials availability 
This study did not generate new unique reagents.  
 
Data and code availability  

 

• The following data sets are made available from the Zenodo repository 
https://doi.org/10.5281/zenodo.7079268   : 

1. List of hCoV229E RBD sequences, with associated isolate and collection date 
identifiers, and ScanNet antigenicity score for reproducing Figure 3A. 

2. List of artificial RBD sequences generated by an evolutionary-based sequence 
generative model for reproducing Figure 3B, Supplementary Figure S6H. 

3. Multiple Sequence Alignment of RBD sequences and sample weights used for training 
the sequence generative model used in Figure 3B, Supplementary Figures S2C, S7. 

4. Empirical epitope distribution for the RBD shown in Supplementary Figures S1. 
5. virtual Deep Mutational Scan performed with ScanNet and the sequence generative 

model shown in Supplementary Figure S2. 
The remaining data analyzed (protein structure files) are publicly available from the Protein 
Data Bank. 

• All computational analysis, statistical analysis and visualizations were carried out in Python 3.6.12 and 
3.8.5 using publicly available software and standard packages (numpy, scipy, pandas, numba, scikit-
learn, biopython, matplotlib, seaborn). Source code and trained models for ScanNet are available from 
https://github.com/jertubiana/ScanNet. ScanNet is also available as a public webserver from 
http://bioinfo3d.cs.tau.ac.il/ScanNet/. Source code for training, scoring and sampling Restricted 
Boltzmann Machines is available from (https://github.com/jertubiana/PGM). The following additional 
software were used: Modeller (https://salilab.org/modeller/), PyRosetta (https://www.pyrosetta.org), 
HHblits (https://github.com/soedinglab/hh-suite), MAFFT (https://mafft.cbrc.jp/alignment/software/), 
ChimeraX (https://www.cgl.ucsf.edu/chimerax/). BioRender was used for the graphical abstract. 
 

• Any additional information required to reanalyze the data reported in this paper is available from the 
lead contact upon request.  

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  
 

8 weeks old female C57BL/6 mice were ordered from The Jackson Laboratory and housed in pathogen-free 

conditions at the core animal facility at the University of Pittsburgh Medical Center with the approval from the 

University of Pittsburgh Institutional Animal Care and Use Committee. 40µg recombinant RBD plus 5µg LPS-

EB VacciGrade™ (InvivoGen) was given to isoflurane anesthetized mice in sterile PBS (50µL) intranasally on 

day 0 and day 10, a test bleed was draw on day 25 and mice were sacrificed on day 35 for bleed, spleen and lung 

harvesting. 

 

Jo
urn

al 
Pre-

pro
of

mailto:wally.yis@gmail.com
https://doi.org/10.5281/zenodo.7079268
https://github.com/jertubiana/ScanNet
http://bioinfo3d.cs.tau.ac.il/ScanNet/
https://github.com/jertubiana/PGM
https://salilab.org/modeller/
https://www.pyrosetta.org/
https://github.com/soedinglab/hh-suite
https://mafft.cbrc.jp/alignment/software/
https://www.cgl.ucsf.edu/chimerax/


10 

METHOD DETAILS  

ScanNet 

Deep learning has been highly successful in protein structure prediction (AlQuraishi, 2019; Baek et al., 2021; 

Ingraham et al., 2018; Jumper et al., 2021; Senior et al., 2020; Wang et al., 2017). However, leveraging the 

structures for function prediction has remained a major challenge (Chruszcz et al., 2010). Recently, we have 

developed ScanNet, a geometric deep learning model for structure-based prediction of binding sites including 

protein-protein binding sites and B-cell epitopes (Tubiana et al., 2022). ScanNet is an end-to-end architecture 

learning representations of atoms and amino acids based on the spatio-chemical arrangements of their neighbors. 

Briefly, ScanNet first extracts an atomic neighborhood around each heavy atom (K=16 neighbors, corresponding 

to about 4Å), and calculates their local coordinates in a frame centered around the atom and oriented using the 

covalent bonds. The neighborhood, formally a point cloud with attributes (atom group type) is then passed through 

a set of trainable spatio-chemical filters. Each filter detects a specific spatio-chemical pattern within the 

neighborhood, such as hydrogen bonds. Conversely, some filters also detect prescribed absences of atoms, e.g. 

exposed side chain atoms, or backbones nitrogens/oxygens available for hydrogen bond formation. The later 

filters are critical for epitope prediction, as reactive atom groups that are not engaged in intra-chain interactions 

are more prone to be targeted by antibodies. The resulting atom-wise embeddings are next pooled at the amino 

acid level, and the process is reiterated around each amino acid. Finally, the resulting amino acid-wise embeddings 

are converted to propensity scores via a neighborhood attention module, which projects the embeddings to scalar 

values and smoothes them (in a learnt fashion) across a neighborhood. 

 

We previously trained ScanNet for detecting B-cell epitopes based on 3756 antibody-antigen complexes available 

from the PDB. ScanNet predicted known epitopes substantially more accurately than AlphaFold-multimer or 

previous works that relied on amino acid propensity scores and geometric features such as solvent accessibility. 

We previously found that for the Spike protein RBD of WT, the predicted antigenicity profile correlated well 

with the residue-wise antibody hit rate computed from 246 PDB structures of spike protein - antibody complexes, 

defined as the fraction of antibodies that bind to the residue (Tubiana et al., 2022). We successfully reproduced 

the analysis with the prediction pipeline described below (Figure S1). 

 

VOCs antigenicity and protein binding profiles 

Since the sequences considered are highly similar (92-99% sequence identity to WT) and the structures are 

virtually indistinguishable by human eye, the predicted epitope propensity profiles are overall similar. 

Additionally, ScanNet is sensitive to subtle structural features such as sidechain-backbone hydrogen bonds 

(especially for asparagines) that are not always consistent from one crystal structure to the other for a given 

variant. To maximize the signal-to-noise ratio, we proceeded as follows: 

1. We used the model version that only takes the sequence and structure as input and discards the position-

weight matrix. For the antigenicity profile, this version achieves the same performance as the one using 

evolutionary information (Table S4 (Tubiana et al., 2022)). For the protein binding profile, the 

performance is overall lower than the version using evolutionary information (Table 1(Tubiana et al., 

2022)), but is nonetheless satisfactory for the Spike RBD. 

2. All predictions were averaged over 11 networks, each trained using a different random seed. All SARS-

CoV-1/2 antibody-antigen complexes were excluded from the training set. 

3. We used multiple RBD structures per variant. For the WT, we selected 29 RBD structures. For the other 

VOCs, all the available RBD structures were taken (WT PDBs: 7eam:A, 7mzj:B, 7dhx:B, 7mfu:A, 7efr:B, 

7kn3:A, 7mmo:C, 7kgj:A, 7n4j:A, 7mf1:A, 7mzm:A, 7jmo:A, 7vnb:B, 7s4s:A, 7lop:Z, 7r6w:R, 7kmg:C, 

7deu:A, 7det:A, 7c8v:B, 7cjf:C, 7d2z:B, 7bnv:A, 7nx6:E, 6m0j:E, 7mzh:E, 7ean:A, 7n3i:C, 6yla:E. 

Alpha: 7fdg:E, 7neg:E, 7nx9:E, 7mji:B, 7mjl:A, 7mjn:B, 7ekf:B. Beta: 7ps4:E, 7ps6:E, 7ps0:E, 7ps7:E, 

7ps2:G, 7ps0:A, 7ps5:E, 7q0h:E, 7prz:E, 7pry:E, 7ps1:E, 7q0g:E, 7nxa:E, 7e8m:E. Delta: 7w9f:E,  

7w9i:E,  7wbq:B, 7wbq:D, 7v8b:A. Omicron: 7qnw:E, 7wbp:B, 7wbl:B, 7t9l:A. SARS-CoV-1: 3bgf:S, 

7rks:R, 6waq:D, 2ajf:E, 3d0g:E, 3scl:E, 2ghv:E, 2ghw:A, 2dd8:S). 
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4. Since some structures consistently missed many sidechain-backbone hydrogen bonds, we standardized 

them by applying to each structure the FastRelax protocol of PyRosetta (5 cycles)(Chaudhury et al., 2010; 

Nivón et al., 2013). To reduce the noise induced by Rosetta, we generated 20 relaxation runs per structure 

and averaged epitope profiles over them. This protocol reduced the intra-variant, inter-structure standard 

deviation by 10-25%. 

 

Altogether, the antigenicity and protein binding propensity profiles of each single point mutant were averaged 

over 11 X 20 X N profiles where N was the number of available RBD structures. Based on the intra-variant, inter-

structure variance, we estimated the average resolution of our differential antigenicity profiles as 0.008 (in 

probability units). RBS residues were defined based on available crystal structures as: 403, 417-421, 445-456, 

473-505. The overall RBS antigenicity and the binding score were defined as the average across RBS residues of 

the corresponding profile. 

 

Single-point mutants antigenicity profiles 

Mutant structures were generated using comparative modeling. We first selected six representative templates for 

the WT RBD by clustering the aforementioned RBD structures (7jvb:A, 7eam:A, 7d2z:B, 7kgj:A, 7vnb:B, 

7det:A). Next, we generated for each single point mutant and each template 20 structural models using 

Modeller(Webb and Sali, 2017). Homology modeling is sufficiently accurate here (and much faster than 

AlphaFold) because of the high sequence identity values (92-99%), and because VOCs have very small 

conformational variability (as evidenced by experimental crystal structures). We also verified on a few examples 

that Modeller models were almost identical to AlphaFold ones. As neutral controls, we also generated structural 

models for the original amino acid at each position (i.e. the WT sequence). Each model was scored using the 11 

networks, obtaining 6x20x11=1320 profiles per mutant which were then averaged to yield a single antigenicity 

profile and a single binding propensity profile. The overall impact of a mutation to antigenicity was defined as 

the difference between the summed profiles across the entire protein. Despite the averaging, we found that 

conformational variability yielded changes in total propensity of the same order of magnitude as the one of 

changes upon single point mutants: 48% of the mutations had an insignificant impact on total antigenicity, i.e. 

within the [5%,95%] percentiles of the WT antigenicity distribution (Figure S7A). The predicted profiles notably 

featured small variations in regions far away from the mutation, arising solely because of modeling noise. To 

improve the signal to noise ratio, we instead computed a weighted sum of the difference of profiles, where the 

weight is a smoothing function of the distance to the mutated residue (Figure S7C). Since ScanNet predictions 

are based on local neighborhoods and the conformational noise away from the mutation is expected to average 

out anyway, the local estimator is unbiased and has lower variance. After smoothing, only 21% of mutations were 

insignificant (Figure S7B). Protein binding propensity profiles were calculated in the same manner using 

comparative models and ScanNet models trained for protein binding site prediction (Figure S7D-E). Finally, a 

positive correlation was found between changes in antigenicity and change in binding (Figure S7F). This reflects 

the trade-off between high receptor binding propensity and low antigenicity. The ~470k structural models and 

~10 million profiles were generated in about ten days using a single computer with 64Gb RAM and an Intel Xeon 

Phi processor with 56 cores (52ms per profile).  

 

Combined effect of mutations 

To evaluate potential epistatic effects, we chose the seven RBS mutations that reduced antigenicity (N440K, 

G446S, S477N, T478K, Q493R, G496S, Q498R) and tested all 27 combinations of reverse mutations from 

Omicron background (i.e., the antigenicity should increase again). The same modeling protocol was used as for 

the single-point mutants, but with 15 templates instead of six (7jvb_A, 7eam_A, 7d2z_B, 7kgj_A, 7vnb_B, 

7det_A, 7w9f_E, 7w9i)E, 7qnw_E, 7wbp_B, 7w7bl_B, 7t9k_A, 7t9c_B, 7u0d_B, 7wlc_E). Figure S8 shows the 

scatter plot of Hamming distance to Omicron sequence against the change in antigenicity, with full line and dashed 

line corresponding, respectively to the i) average over all mutants with k mutations and the ii) epistasis-free 

prediction based on the effect of the single-point mutations. Overall, the epistasis-free prediction underestimates 

the effect of combined mutations, meaning mutations tend to reinforce one another on average (positive epistasis). 
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Generation and screening of de novo variants 

We investigated whether additional mutations of the SARS-CoV-2 RBD could further reduce its RBS 

antigenicity, without altering other components of the viral fitness such as structural stability and ACE2 binding. 

Using ScanNet, we tested sequences in the vicinity of the original WT sequence that are likely to arise based on 

past evolutionary records. These de novo RBD variant sequences were obtained by sampling from a sequence 

generative model trained on a multiple sequence alignment (MSA) of beta coronaviruses RBDs. Methodological 

details about the protocol and validation steps are described below. 

 

1. Construction of the MSA. Homologs of the WT RBD were first searched in the UniprotKB using BLAST. Top 

hits were manually aligned with MAFFT(Nakamura et al., 2018) (command: mafft —amino —localpair —

maxiterate 1000 —op 5 —ep 0), and only the columns not gapped for the WT were kept. Next, additional 

homologs were searched in the UniRef30 (release 2020/06) using HH-blits(Steinegger et al., 2019). After filtering 

out hits with unknown residues and/or >25% of gaps, we obtained a (redundant) alignment of  B=521 sequences. 

The MSA covered all the five betacoronaviruses subgenii (sarbecovirus, embecovirus, merbecovirus, 

nobecovirus, hibecovirus). The effective number of sequences (defined as in (Morcos et al., 2011), approximately 

corresponding to the number of 90% sequence identity clusters) was Beff=72.8, a relatively low value. The 

sequence profile of the MSA (Figure S6A) features conserved sites (most of which are buried), whereas the RBS 

region is highly variable. 

 

2. Sequence generative model. Herein, the objective is to learn a probability distribution over the sequence space 

 by maximizing the average likelihood   of the previously observed viral sequences in the MSA. 

Intuitively, maximizing the likelihood amounts to assigning high probability values to seen (i.e. evolutionary 

selected) sequences and low elsewhere (i.e. sequences unexplored or washed away by selection), such that  is 

normalized to 1. The likelihood can therefore be interpreted as a proxy for viral fitness (Cocco et al., 2018). 

Importantly, a “smooth” parametric form must be chosen to ensure that the model also assigns high 

probability values to sequences that are close (and presumably evolutionary fit), but unobserved either due to 

limited sequencing or exploration of the sequence space throughout evolution. Possible choices for the parametric 

forms include the independent model (i.e. the position specific sequence model or equivalently, insertion-free 

HMM profiles), Potts model (i.e. the Boltzmann Machine, BM)(Morcos et al., 2011) or Restricted Boltzmann 

Machine (RBM) as well as various deep learning-based models(Riesselman et al., 2018; Wu et al., 2021). We 

used RBM here, which is an undirected graphical model that learns the conservation and coevolution patterns of 

the sequence distribution(Tubiana et al., 2019). In the context of RBD modeling, RBM enjoys two desirable 

properties over the more thoroughly validated BM model. First, its flexible number of parameters allows better 

optimization of the bias-variance trade-off. RBM has  parameters, where N is the number of 

columns, M is the (tunable) number of hidden units and is the number of amino acids (+gap) compared to 

 for the Potts model. Our selected model has fewer parameters than a regular Potts model. 

Second, it is able to model high-order epistasis arising from heterogeneous viral fitness landscapes. Indeed, since 

different subgenii target different receptors, they are expected to have related but distinct fitness landscapes. 

 

RBM were trained using the PGM package (https://github.com/jertubiana/PGM)(Tubiana et al., 2019) using the 

Persistent Contrastive Divergence algorithm with the following parameters: number of hidden units: from 5 to 

100; hidden unit potential: dReLU;  batch size: 100; number of Markov chains: 100; number of Monte Carlo steps 

between each gradient evaluation: 100; number of gradient updates: 40000; optimizer: ADAM with initial 

learning rate: , exponentially decaying after 50% of the training to , , , . For 

the regularization, we used a L1
2 penalty on the weights (of strength  ranging from 0.0 to 5.0) and L2 penalty 

on the fields (of strength ). Samples were assigned a weight inversely proportional to their 

number of 90% sequence identity homologs in the MSA. Annealed importance sampling was used to evaluate 

the partition functions, using  intermediate temperatures and 10 repeats. The low depth of the alignment 

prompted us to thoroughly explore the hyperparameter space to best calibrate the model complexity (Figure 
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S6B,C). We divided the MSA into five folds so that any pair of sequences belonging to different folds have at 

most 80% sequence identity. We then performed a grid search over the regularization strength and number of 

hidden units. We monitored i) the quality of convergence, ii) the cross-validation likelihood, iii) cross-validation 

pseudo-likelihood (not shown, correlated to the likelihood), and iv) the spearman correlation between the 

likelihood of all single-point variants of WT and their corresponding yeast-display expression levels - an 

experimental proxy for structural stability. The latter were measured in a deep mutational scan experiment 

performed by Starr et al. (Starr et al., 2020).  We selected the model with  hidden units and regularization 

strength . It featured a per-site likelihood value of -1.31 (compared to -1.98 for the best independent 

model after grid search on pseudo-count values), Spearman correlation  (Figure S6D, compared to 0.42 

for the best independent model and  0.54 for the Potts model as recently reported in(Rodriguez-Rivas et al., 2022)) 

and per-site entropy of 0.99 (corresponding to 2.7 amino acid choices per site). Its likelihood function also 

correlated with the changes in ACE2 binding affinity upon mutation as measured by deep mutational scan (Starr 

et al., Spearman correlation 0.41, p =10-158). Finally, the generative properties of the model were deemed 

satisfactory: Monte Carlo samples obtained from  reproduced the moments (Figure S6E,F) and the clustered 

topology of the distribution of natural sequences (Figure S6G).  

 

3. Artificial mutant generation. After model selection 1,000 artificial mutants were generated as follows. We 

sampled from the gap-less, focused distribution , where 15 is the same 

number of mutations from WT as Omicron. Sampling from the conditional distribution was done by importance 

sampling Markov Chain Monte Carlo, i.e. by sampling from the modified distribution 

 where  was chosen such that . We 

used the alternate Gibbs sampler, with 5000 burn-in steps, 100 steps between each sample and 100 independent 

chains. Generated samples with fewer or more mutations were discarded; approximately 5000 samples with 

exactly 15 mutations were kept. We extracted 1,000 representatives by agglomerative clustering (using as 

representative the cluster member with highest likelihood). The distribution of the mutations (Figure S6H) 

features high variability on the RBS in general and particularly at positions mutated in VOCs. In total, 1523 of 

the  potential mutations are observed at least once. All VOCs mutations are observed at least once, 

except for Q498R and S375F, with the mutations Y505H and G446S being the most frequent (in 6.9% and 6.4% 

of the sequences). 

 

4. Scoring of artificial mutants. We used the same comparative modeling followed by ScanNet antigenicity and 

binding site prediction pipeline as for the single-point mutants.  
 

5. Mutation enrichment analysis. An artificial mutant “improves” over Omicron if (i) its ScanNet antigenicity 

score is lower or equal than the one of Omicron, and (ii) its ScanNet binding propensity score higher or equal 

than Omicron. Out of 1000 sampled artificial mutants, 74 improved mutants were found. For each of the 1523 

mutations sampled, we tested its association with the improved phenotype using a 𝜒2 contingency test, and used 

the Benjamini-Hochberg procedure to control the false discovery rate (0.05 cut-off). In total six statistically 

significant mutations were found: Q493 I/V/L, P479I, L452Y, K462Q. They are all viable for expression and 

ACE2 binding based the DMS data from (Starr et al., 2020). 

 

 

Analysis of the human 229E alphacoronavirus 

Previous structural and immunological studies suggested that the hCoV229E alphacoronavirus has been 

undergoing extensive antibody escape since its entry into human population(Eguia et al., 2021; Li et al., 2019; 

Wong et al., 2017), and that its evolution could reflect the future evolution of SARS-CoV-2(Eguia et al., 2021). 

The hCoV229E proteome features a spike protein with a (structurally different) receptor binding domain which 

targets the human aminopeptidase N protein. Similarly to SARS-CoV-2, the corresponding receptor binding site, 

which consists of three loops, is also the major immunodominant region. We evaluated the evolution of 

antigenicity of the hCoV229E RBS using ScanNet as follows. We first collected six template structures for the 
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229E RBD (PDB 6u7h:A, 6atk:E, 6ixa:A, 6u7e:D, 6u7f:D, 6u7g:D) and constructed a structure-based multiple 

sequence alignment using ChimeraX(Pettersen et al., 2021), and an HMM profile model (using the hhalign 

utility(Steinegger et al., 2019)). Next, we retrieved all 203 available hCoV229E spike protein sequences from 

Uniprot, aligned them to the HMM profile (command hhalign -t one_strain_sequence.fasta -i 

template_sequences.fasta -oa3m output.fasta -all) and discarded sequences that did not cover at least 100 of the 

134 columns of the alignment. The corresponding EMBL entry was used to retrieve the corresponding 

isolate/strain name and its collection date, if available. In total, we obtained 115 (redundant) sequences with 

known collection dates between 1967 and 2022. For each sequence, we generated 20x6 structural models with 

MODELLER(Webb and Sali, 2017) (20 per template). Since there was no antibody-hCoV229E spike protein 

complex in the training set of ScanNet, we used all the 55 networks trained for antibody binding site prediction 

(including the 11 used elsewhere that were not trained on SARS-CoV-1/2 data). To define the RBS residues, we 

first extracted all interface residues (6Å distance cut-off) of the template complexes (PDB 6atk, 6u7e, 6u7g, 6u7f) 

and labeled the corresponding MSA columns as RBS. Then, for a given strain, its RBS residues were identified 

as the ones mapped onto one of the RBS columns. The RBS antigenicity was defined for a given strain as the 

average over all networks, all structural models and all non-gapped RBS columns of the antigenicity profile. Note 

that due to the presence of deletions, the number of residues included in the RBS varied from one variant to the 

other and therefore summing rather than averaging yielded slightly different results. We tried both options and 

found a similar decreasing trend in both cases. Error bars (one standard deviation) were estimated based on the 

structural model variability (Figure 3A). The isotonic regression fit was performed using scikit-learn 

(sklearn.isotonic.IsotonicRegression, default parameters). 

 

In vitro Antigen Restimulation Assay 

Individual lungs were collected, mechanically digested, and enzymatically digested with collagenase/DNase for 

1 hr at 37°C as described previously(Chen et al., 2011). Single cell suspensions were then passed through a 70-

μm sterile filter. Red blood cells were lysed using a NH4Cl solution and the cells were enumerated then plated at 

5 × 105 cells per well in 96-well, stimulated with 10µg/mL recombinant RBD proteins for 72 h. The supernatants 

were collected and analyzed by murine IFNg and IL-17A ELISA (BioLegend). Spleens were processed similar 

to the lungs without the need of enzymatic digestion. 

 

ELISA (enzyme-linked immunosorbent assay) 

Indirect ELISA was carried out to evaluate the serological responses of the total antibody in mice sera to an RBD. 

A 96-well ELISA plate (R&D system) was coated with the recombinant RBD protein (Acro Biosystems) at an 

amount of approximately 2-3 ng per well in a coating buffer (15 mM sodium carbonate, 35 mM sodium 

bicarbonate, pH 9.6) overnight at 4°C, with subsequent blockage with a blocking buffer (DPBS, v/v 0.05% Tween 

20, 5% milk) at room temperature for 2 hours. To test the immune response, the mice serum was serially 4 or 5-

fold diluted starting from 1:27 (Omicron-immunized sera), 1:72 (WT) or 1:100 (other VOCs) in the blocking 

buffer and then incubated with the RBD-coated wells at room temperature for 2 hours. HRP-conjugated secondary 

goat anti-mouse IgG (H+L) (Thermo Fisher, cat# G-21040) were diluted 1:1,500 in the blocking buffer and 

incubated with each well for an additional 1 hour at room temperature. Three washes with 1x PBST (DPBS, v/v 

0.05% Tween 20) were carried out to remove nonspecific absorbances between each incubation. After the final 

wash, the samples were further incubated in the dark with freshly prepared w3,3′,5,5′-Tetramethylbenzidine 

(TMB) substrate for 10 mins at room temperature to develop the signals. After the STOP solution (R&D system), 

the plates were read at multiple wavelengths (450 nm and 550 nm) on a plate reader (Multiskan GO, Thermo 

Fisher). The raw data were processed by Prism 9 (GraphPad) to fit into a 4PL curve and to calculate IC50/logIC50.  

Competitive ELISA with recombinant hACE2 

A 96-well plate was pre-coated with either WT or Omicron recombinant RBD at 2-3 µg/ml at 4°C overnight. 

Mice serum was 3-fold diluted starting from 1:15 (Omicron) or 1:45 (WT) in the blocking buffer with a final 

amount of 50 ng biotinylated hACE2 (Sino Biological, cat# 10108-H08H-B) / 8 ng epitope 3 nanobody / 8 ng 

epitope 4 nanobody at each concentration and then incubated with the plate at room temperature for 2 hrs. The 

plate was washed by the washing buffer to remove the unbound hACE2. 1:5,000 diluted Pierce™ High Sensitivity 
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NeutrAvidin™-HRP (Thermo Fisher cat# 31030) or 1:7,500 diluted T7-tag polyclonal antibody-HRP (Thermo 

Fisher, cat# PA1-31449) were incubated with the plate for 1 hr at room temperature. TMB solution was added to 

react with the HRP conjugates for 10 mins. The reaction was then stopped by the Stop Solution. The signal 

corresponding to the amount of the bound hACE2 or nanobodies was measured by a plate reader at 450 nm and 

550 nm. The wells without sera were used as control to calculate the percentage of hACE2 or nanobody signal. 

The resulting data were analyzed by Prism 9 (GraphPad) and plotted. 

 

Pseudotyped SARS-CoV-2 neutralization assay 

The 293T-hsACE2 stable cell line (Integral Molecular, cat# C-HA101, Lot# TA060720MC) and pseudotyped 

SARS-CoV-2 (Wuhan-Hu-1 strain D614G and Omicron) particles with luciferase reporters were purchased from 

the Integral Molecular. The neutralization assay was carried out according to the manufacturers’ protocols. In 

brief, 2-fold serially diluted immunized mice serum starting from 1:22 dilution was incubated with the 

pseudotyped SARS-CoV-2-luciferase. For accurate measurements, seven concentrations were tested for each 

mice and at least two repeats were done. Pseudovirus in culture media without sera was used as a negative control. 

100 µl of the mixtures were then incubated with 100 µl 293T-hsACE2 cells at 2.5x10e5 cells/ml in the 96-well 

plates. The infection took ~72 hrs at 37 °C with 5% CO2. The luciferase signal was measured using the Renilla-

Glo luciferase assay system (Promega, cat# E2720) with the luminometer at 1 ms integration time. The obtained 

relative luminescence signals (RLU) from the negative control wells were normalized and used to calculate the 

neutralization percentage at each concentration. Data was processed by Prism 9 (GraphPad). Due to the poor 

neutralization of the serum at the highest concentration (lowest dilution), the IC50 was estimated as the maximal 

dilution that could inhibit ~50% cell infections by the pseudovirus.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS  

All statistical analysis was carried out using Python and the numpy scipy, and statannot packages. All technical 

details are provided throughout the manuscript, in the figure captions, or in the STAR methods. 
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Highlights 
 

• Omicron breakthrough infection elicits lower antibody response than prior variants 

• Deep learning model predicts reduced antigenicity of the Omicron receptor binding 
domain 

• Mice immunization experiments show reduced B-cell immunogenicity of Omicron 
spike RBD 

• Additional mutations could reduce antigenicity while maintaining receptor binding 
 

eTOC blurb 
 
SARS-CoV-2 Omicron variant evades most neutralizing vaccine-induced antibodies and is 
associated with lower antibody titers upon breakthrough infections than previous variants. 
Tubiana et al. investigate the underlying mechanism using geometric deep learning, mice 
immunization experiments and biochemical assays. Mutations reduce antigenicity of the 
receptor binding site, leading to lower antibody response. 
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KEY RESOURCES TABLE 

The table highlights the reagents, genetically modified organisms and strains, cell lines, software, 
instrumentation, and source data essential to reproduce results presented in the manuscript. Depending 
on the nature of the study, this may include standard laboratory materials (i.e., food chow for metabolism 
studies, support material for catalysis studies), but the table is not meant to be a comprehensive list of all 
materials and resources used (e.g., essential chemicals such as standard solvents, SDS, sucrose, or 
standard culture media do not need to be listed in the table). Items in the table must also be reported 
in the method details section within the context of their use. To maximize readability, the number of 
oligonucleotides and RNA sequences that may be listed in the table is restricted to no more than 10 
each. If there are more than 10 oligonucleotides or RNA sequences to report, please provide this 
information as a supplementary document and reference the file (e.g., See Table S1 for XX) in the key 
resources table. 

Please note that ALL references cited in the key resources table must be included in the 
references list. Please report the information as follows: 

• REAGENT or RESOURCE: Provide full descriptive name of the item so that it can be identified and 
linked with its description in the manuscript (e.g., provide version number for software, host source 
for antibody, strain name). In the experimental models section (applicable only to experimental life 
science studies), please include all models used in the paper and describe each line/strain as: model 
organism: name used for strain/line in paper: genotype. (i.e., Mouse: OXTRfl/fl: B6.129(SJL)-
Oxtrtm1.1Wsy/J). In the biological samples section (applicable only to experimental life science studies), 
please list all samples obtained from commercial sources or biological repositories. Please note that 
software mentioned in the methods details or data and code availability section needs to also be 
included in the table. See the sample tables at the end of this document for examples of how to 
report reagents. 

 

• SOURCE: Report the company, manufacturer, or individual that provided the item or where the item 
can be obtained (e.g., stock center or repository). For materials distributed by Addgene, please cite 
the article describing the plasmid and include “Addgene” as part of the identifier. If an item is from 
another lab, please include the name of the principal investigator and a citation if it has been 
previously published. If the material is being reported for the first time in the current paper, please 
indicate as “this paper.” For software, please provide the company name if it is commercially 
available or cite the paper in which it has been initially described. 

 

• IDENTIFIER: Include catalog numbers (entered in the column as “Cat#” followed by the number, 
e.g., Cat#3879S). Where available, please include unique entities such as RRIDs, Model Organism 
Database numbers, accession numbers, and PDB, CAS, or CCDC IDs. For antibodies, if applicable 
and available, please also include the lot number or clone identity. For software or data resources, 
please include the URL where the resource can be downloaded. Please ensure accuracy of the 
identifiers, as they are essential for generation of hyperlinks to external sources when available. 
Please see the Elsevier list of data repositories with automated bidirectional linking for details. When 
listing more than one identifier for the same item, use semicolons to separate them (e.g., 
Cat#3879S; RRID: AB_2255011). If an identifier is not available, please enter “N/A” in the column.   

o A NOTE ABOUT RRIDs: We highly recommend using RRIDs as the identifier (in particular for 
antibodies and organisms but also for software tools and databases). For more details on how 
to obtain or generate an RRID for existing or newly generated resources, please visit the RII or 
search for RRIDs. 

 
Please use the empty table that follows to organize the information in the sections defined by the 
subheading, skipping sections not relevant to your study. Please do not add subheadings. To add a row, 
place the cursor at the end of the row above where you would like to add the row, just outside the right 
border of the table. Then press the ENTER key to add the row. Please delete empty rows. Each entry 
must be on a separate row; do not list multiple items in a single table cell. Please see the sample tables 
at the end of this document for relevant examples in the life and physical sciences of how reagents and 
instrumentation should be cited. 
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https://www.force11.org/group/resource-identification-initiative
https://www.elsevier.com/authors/author-resources/research-data/data-base-linking
https://www.force11.org/group/resource-identification-initiative
https://scicrunch.org/resources


 

TABLE FOR AUTHOR TO COMPLETE 
Please upload the completed table as a separate document. Please do not add subheadings to the key resources 
table. If you wish to make an entry that does not fall into one of the subheadings below, please contact your handling 
editor. Any subheadings not relevant to your study can be skipped. (NOTE: For authors publishing in Cell 
Genomics, Cell Reports Medicine, Current Biology, and Med, please note that references within the KRT should be in 
numbered style rather than Harvard.) 

 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Invitrogen T7 Tag Polyclonal Antibody, HRP Thermo Fisher Cat#: PA1-31449; 
RRID: AB_1960906 

Pierce™ High Sensitivity NeutrAvidin™-HRP Thermo Fisher Cat#: 31030 

Invitrogen goat anti-mouse IgG (H+L) secondary 
antibody, HRP 

Thermo Fisher Cat#: G-21040; 
RRID: AB_2536527 

ELISA Mouse IL-17A  BioLegend Cat#: 432504 

ELISA Mouse IFN-g  BioLegend Cat#: 430804 

Bacterial and virus strains  

SARS-CoV-2 (Wuhan-Hu-1, D614G) reporter virus 
particles (luciferase) 

Integral Molecular Cat#: RVP-702L 

SARS-CoV-2 (Omicron) reporter virus particles 
(luciferase) 

Integral Molecular Cat#: VP-768L 

   

   

   

Biological samples   

   

   

   

   

   

Chemicals, peptides, and recombinant proteins 

SARS-CoV-2 (COVID-19) S protein RBD, MALS verified Acro Biosystems Cat#: SPD-C52H3 

SARS-CoV-2 (COVID-19) Spike RBD (N501Y/Alpha), 
MALS verified 

Acro Biosystems Cat#: SPD-C52Hn 

SARS-CoV-2 (COVID-19) Spike RBD 
(K417N,E484K,N501Y/Beta), MALS verified 

Acro Biosystems Cat#: SPD-C52Hp 

SARS-CoV-2 (COVID-19) Spike RBD 
(L452R,T478K/Delta), MALS verified 

Acro Biosystems Cat#: SPD-C52Hh 

SARS-CoV-2 (2019-nCoV) Spike RBD 
(B.1.1.529/Omicron), MALS verified 

Acro Biosystems Cat#: SPD-C522e 

ACE2 protein, Human, biotinylated Sinobiologics Cat#: 10108-H08H-B 

Epitope 3 and 4 nanobodies Xiang et al. 2022 N\A 

LPS-EB VacciGrade™ InvivoGen Cat#: vac-3pelps 

   

Critical commercial assays 

Renilla-Glo luciferase assay system Promega Cat#: E2720 
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Deposited data 

   

   

   

   

   

Experimental models: Cell lines 

293T-hsACE2 stable cell line Integral Molecular Cat# C-HA101; Lot#: 
TA060720MC 

   

   

   

   

Experimental models: Organisms/strains 

C57BL/6J, mus musculus The Jackson 
Laboratory 

IMSR_JAX:000664 

   

   

   

   

   

Oligonucleotides 

   

   

   

   

   

Recombinant DNA 

   

   

   

   

   

Software and algorithms 

ScanNet Tubiana et al. 2022 https://github.co
m/jertubiana/Sca
nNet  
 
http://bioinfo3d.c
s.tau.ac.il/ScanN
et/ 

Restricted Boltzmann Machines Tubiana et al. 2019 https://github.co
m/jertubiana/PG
M 

Modeller Webb and Sali 2017 https://salilab.org
/modeller/ 
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https://github.com/jertubiana/ScanNet
https://github.com/jertubiana/ScanNet
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http://bioinfo3d.cs.tau.ac.il/ScanNet/
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https://github.com/jertubiana/PGM
https://github.com/jertubiana/PGM
https://github.com/jertubiana/PGM
https://salilab.org/modeller/
https://salilab.org/modeller/


 

PyRosetta Chaudury et al. 2010 https://www.pyro
setta.org 

HHblits Steinegger et al. 2019 https://github.co
m/soedinglab/hh-
suite 

MAFFT Nakamura et al. 2018 https://mafft.cbrc.
jp/alignment/soft
ware/ 

ChimeraX Pettersen et al. 2021 https://www.cgl.u
csf.edu/chimerax
/ 

Other 
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LIFE SCIENCE TABLE WITH EXAMPLES FOR AUTHOR REFERENCE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rabbit monoclonal anti-Snail Cell Signaling Technology Cat#3879S; RRID: 
AB_2255011 

Mouse monoclonal anti-Tubulin (clone DM1A) Sigma-Aldrich Cat#T9026; RRID: 
AB_477593 

Rabbit polyclonal anti-BMAL1 This paper N/A 

Bacterial and virus strains 

pAAV-hSyn-DIO-hM3D(Gq)-mCherry Krashes et al., 2011 Addgene AAV5; 
44361-AAV5 
 

AAV5-EF1a-DIO-hChR2(H134R)-EYFP Hope Center Viral Vectors 
Core 

N/A 

Cowpox virus Brighton Red BEI Resources NR-88 

Zika-SMGC-1, GENBANK: KX266255 Isolated from patient 
(Wang et al., 2016) 

N/A 

Staphylococcus aureus ATCC ATCC 29213 

Streptococcus pyogenes: M1 serotype strain: strain 
SF370; M1 GAS 

ATCC ATCC 700294 

Biological samples 

Healthy adult BA9 brain tissue University of Maryland 
Brain & Tissue Bank; 
http://medschool.umarylan
d.edu/btbank/ 

Cat#UMB1455 

Human hippocampal brain blocks New York Brain Bank http://nybb.hs.colum
bia.edu/ 

Patient-derived xenografts (PDX) Children's Oncology 
Group Cell Culture and 
Xenograft Repository 

http://cogcell.org/ 

Chemicals, peptides, and recombinant proteins 

MK-2206 AKT inhibitor Selleck Chemicals S1078; CAS: 
1032350-13-2 

SB-505124 Sigma-Aldrich S4696; CAS: 
694433-59-5 (free 
base) 

Picrotoxin Sigma-Aldrich P1675; CAS: 124-
87-8 

Human TGF-β  R&D 240-B; GenPept: 
P01137 

Activated S6K1  Millipore Cat#14-486 

GST-BMAL1  Novus  Cat#H00000406-
P01 

Critical commercial assays 

EasyTag EXPRESS 35S Protein Labeling Kit PerkinElmer NEG772014MC  

CaspaseGlo 3/7 Promega G8090 

TruSeq ChIP Sample Prep Kit Illumina IP-202-1012 

Deposited data 

Raw and analyzed data  This paper GEO: GSE63473 

B-RAF RBD (apo) structure This paper PDB: 5J17 
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Human reference genome NCBI build 37, GRCh37 Genome Reference 
Consortium 

http://www.ncbi.nlm.
nih.gov/projects/gen
ome/assembly/grc/h
uman/ 

Nanog STILT inference This paper; Mendeley 
Data 

http://dx.doi.org/10.1
7632/wx6s4mj7s8.2 

Affinity-based mass spectrometry performed with 57 
genes 

This paper; Mendeley 
Data 

Table S8; 
http://dx.doi.org/10.1
7632/5hvpvspw82.1 

Experimental models: Cell lines   

Hamster: CHO cells  ATCC CRL-11268 

D. melanogaster: Cell line S2: S2-DRSC Laboratory of Norbert 
Perrimon 

FlyBase: 
FBtc0000181 

Human: Passage 40 H9 ES cells  MSKCC stem cell core 
facility 

N/A 

Human: HUES 8 hESC line (NIH approval number 
NIHhESC-09-0021) 
 

HSCI iPS Core hES Cell Line: 
HUES-8 

Experimental models: Organisms/strains  

C. elegans: Strain BC4011: srl-1(s2500) II; dpy-
18(e364) III; unc-46(e177)rol-3(s1040) V. 

Caenorhabditis Genetics 
Center 

WB Strain: BC4011; 
WormBase: 
WBVar00241916 

D. melanogaster:  RNAi of Sxl: y[1] sc[*] v[1]; 
P{TRiP.HMS00609}attP2 

Bloomington Drosophila 
Stock Center 

BDSC:34393; 
FlyBase: 
FBtp0064874 

S. cerevisiae:  Strain background: W303 ATCC ATTC: 208353 

Mouse: R6/2: B6CBA-Tg(HDexon1)62Gpb/3J The Jackson Laboratory JAX: 006494 

Mouse: OXTRfl/fl: B6.129(SJL)-Oxtrtm1.1Wsy/J The Jackson Laboratory RRID: 
IMSR_JAX:008471 

Zebrafish: Tg(Shha:GFP)t10:  t10Tg Neumann and Nuesslein-
Volhard, 2000 

ZFIN: ZDB-GENO-
060207-1 

Arabidopsis: 35S::PIF4-YFP, BZR1-CFP Wang et al., 2012 N/A 

Arabidopsis: JYB1021.2: 

pS24(AT5G58010)::cS24:GFP(-G):NOS #1 

NASC NASC ID: N70450 

Oligonucleotides 

siRNA targeting sequence: PIP5K I alpha #1: 
ACACAGUACUCAGUUGAUA 
 

This paper N/A 

Primers for XX, see Table SX This paper N/A 

Primer: GFP/YFP/CFP Forward: 
GCACGACTTCTTCAAGTCCGCCATGCC 

This paper N/A 

Morpholino: MO-pax2a 
GGTCTGCTTTGCAGTGAATATCCAT 

Gene Tools ZFIN: ZDB-
MRPHLNO-061106-
5 

ACTB (hs01060665_g1)  Life Technologies  Cat#4331182 

RNA sequence: hnRNPA1_ligand: 
UAGGGACUUAGGGUUCUCUCUAGGGACUUAG
GGUUCUCUCUAGGGA 

This paper 
 

N/A 

Recombinant DNA 

pLVX-Tight-Puro (TetOn) Clonetech Cat#632162 

Plasmid: GFP-Nito This paper N/A 
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http://www.wormbase.org/species/c_elegans/gene/WBGene00005636
http://www.wormbase.org/search/variation/s2500
http://www.wormbase.org/species/c_elegans/gene/WBGene00001077
http://www.wormbase.org/species/c_elegans/gene/WBGene00001077
http://www.wormbase.org/search/variation/e364
http://www.wormbase.org/species/c_elegans/gene/WBGene00006782
http://www.wormbase.org/search/variation/e177
http://www.wormbase.org/species/c_elegans/gene/WBGene00004395
http://www.wormbase.org/search/variation/s1040


 

cDNA GH111110 Drosophila Genomics 
Resource Center 

DGRC:5666; 
FlyBase:FBcl013041
5 

AAV2/1-hsyn-GCaMP6- WPRE  
 

Chen et al., 2013 
 

N/A 

Mouse raptor: pLKO mouse shRNA 1 raptor Thoreen et al., 2009 Addgene Plasmid 
#21339 

Software and algorithms 

ImageJ Schneider et al., 2012 https://imagej.nih.go
v/ij/ 

Bowtie2 Langmead and Salzberg, 
2012 

http://bowtie-
bio.sourceforge.net/
bowtie2/index.shtml 

Samtools Li et al., 2009 http://samtools.sourc
eforge.net/ 

Weighted Maximal Information Component Analysis 
v0.9 

Rau et al., 2013 https://github.com/C
hristophRau/wMICA 

ICS algorithm This paper; Mendeley 
Data 

http://dx.doi.org/10.1
7632/5hvpvspw82.1 

Other 

Sequence data, analyses, and resources related to 
the ultra-deep sequencing of the AML31 tumor, 
relapse, and matched normal 

This paper http://aml31.genome
.wustl.edu 

Resource website for the AML31 publication 
 

This paper https://github.com/ch
risamiller/aml31Supp
Site 
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PHYSICAL SCIENCE TABLE WITH EXAMPLES FOR AUTHOR REFERENCE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Chemicals, peptides, and recombinant proteins 

QD605 streptavidin conjugated quantum dot Thermo Fisher Scientific Cat#Q10101MP 

Platinum black  Sigma-Aldrich Cat#205915 

Sodium formate BioUltra, ≥99.0% (NT) Sigma-Aldrich Cat#71359 

Chloramphenicol Sigma-Aldrich Cat#C0378 

Carbon dioxide (13C, 99%) (<2% 18O) Cambridge Isotope 
Laboratories 

CLM-185-5 

Poly(vinylidene fluoride-co-hexafluoropropylene) Sigma-Aldrich 427179 

PTFE Hydrophilic Membrane Filters, 0.22 m, 90 
mm 

Scientificfilters.com/Tisch 
Scientific 

SF13842 

Critical commercial assays 

Folic Acid (FA) ELISA kit Alpha Diagnostic 
International  

Cat# 0365-0B9 

TMT10plex Isobaric Label Reagent Set  Thermo Fisher  A37725 

Surface Plasmon Resonance CM5 kit  GE Healthcare Cat#29104988 

NanoBRET Target Engagement K-5 kit  Promega  Cat#N2500 

Deposited data 

B-RAF RBD (apo) structure This paper PDB: 5J17 

Structure of compound 5 This paper; Cambridge 
Crystallographic Data 
Center 

CCDC: 2016466 

Code for constraints-based modeling and analysis 
of autotrophic E. coli 

This paper 
 
 

https://gitlab.com/ela
d.noor/sloppy/tree/ma
ster/rubisco 

Software and algorithms 

Gaussian09 Frish et al., 2013 https://gaussian.com 

Python version 2.7 Python Software 
Foundation 

https://www.python.or
g 

ChemDraw Professional 18.0 PerkinElmer https://www.perkinel
mer.com/category/ch
emdraw 

Weighted Maximal Information Component Analysis 
v0.9 

Rau et al., 2013 https://github.com/Ch
ristophRau/wMICA 

Other 

DASGIP MX4/4 Gas Mixing Module for 4 Vessels 
with a Mass Flow Controller 

Eppendorf Cat#76DGMX44 

Agilent 1200 series HPLC  Agilent Technologies https://www.agilent.c
om/en/products/liquid
-chromatography 

PHI Quantera II XPS ULVAC-PHI, Inc. https://www.ulvac-
phi.com/en/products/
xps/phi-quantera-ii/ 
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https://www.python.org/
https://www.python.org/
https://www.perkinelmer.com/category/chemdraw
https://www.perkinelmer.com/category/chemdraw
https://www.perkinelmer.com/category/chemdraw

